Documentation
Project
.
Dilatation
.
Family
Search
return to top
source
Imports
Init
Project.Dilatation.lemma
Mathlib.Algebra.DirectSum.Basic
Mathlib.RingTheory.Ideal.Maps
Mathlib.RingTheory.Ideal.Operations
Imported by
familyPow
instFamilyPow
familyPow_def
familyPow_add
familyPow_zero
Ideal
.
familyPow_def
Ideal
.
mem_familyPow_add
Ideal
.
mem_familyPow_of_mem
source
def
familyPow
{A :
Type
u_1}
{G :
Type
u_2}
[
CommMonoid
A
]
[
Zero
G
]
[
Pow
A
G
]
{ι :
Type
u_3}
(f :
ι
→
A
)
(v :
ι
→₀
G
)
:
A
Equations
familyPow
f
v
=
v
.prod
fun (
i
:
ι
) (
k
:
G
) =>
f
i
^
k
Instances For
source
def
instFamilyPow
{A :
Type
u_1}
{G :
Type
u_2}
[
CommMonoid
A
]
[
Zero
G
]
[
Pow
A
G
]
{ι :
Type
u_3}
:
HPow
(
ι
→
A
)
(
ι
→₀
G
)
A
Equations
instFamilyPow
=
{
hPow
:=
fun (
f
:
ι
→
A
) (
v
:
ι
→₀
G
) =>
familyPow
f
v
}
Instances For
source
theorem
familyPow_def
{A :
Type
u_1}
{G :
Type
u_2}
[
CommMonoid
A
]
[
Zero
G
]
[
Pow
A
G
]
{ι :
Type
u_3}
(f :
ι
→
A
)
(v :
ι
→₀
G
)
:
f
^
v
=
v
.prod
fun (
i
:
ι
) (
k
:
G
) =>
f
i
^
k
source
theorem
familyPow_add
{A :
Type
u_1}
[
CommMonoid
A
]
{ι :
Type
u_3}
(f :
ι
→
A
)
(v w :
ι
→₀
ℕ
)
:
f
^
(
v
+
w
)
=
f
^
v
*
f
^
w
source
@[simp]
theorem
familyPow_zero
{A :
Type
u_1}
[
CommMonoid
A
]
{ι :
Type
u_3}
(f :
ι
→
A
)
:
f
^
0
=
1
source
theorem
Ideal
.
familyPow_def
{A :
Type
u_1}
[
CommSemiring
A
]
{ι :
Type
u_2}
(F :
ι
→
Ideal
A
)
(v :
ι
→₀
ℕ
)
:
F
^
v
=
v
.prod
fun (
i
:
ι
) (
k
:
ℕ
) =>
F
i
^
k
source
theorem
Ideal
.
mem_familyPow_add
{A :
Type
u_1}
[
CommSemiring
A
]
{ι :
Type
u_2}
{F :
ι
→
Ideal
A
}
{v w :
ι
→₀
ℕ
}
{x y :
A
}
(hx :
x
∈
F
^
v
)
(hy :
y
∈
F
^
w
)
:
x
*
y
∈
F
^
(
v
+
w
)
source
theorem
Ideal
.
mem_familyPow_of_mem
{A :
Type
u_1}
[
CommSemiring
A
]
{ι :
Type
u_2}
{F :
ι
→
Ideal
A
}
{a :
ι
→
A
}
{v :
ι
→₀
ℕ
}
(mem :
∀
i
∈
v
.support
,
a
i
∈
F
i
)
:
a
^
v
∈
F
^
v