Documentation

Project.Dilatation.Family

def familyPow {A : Type u_1} {G : Type u_2} [CommMonoid A] [Zero G] [Pow A G] {ι : Type u_3} (f : ιA) (v : ι →₀ G) :
A
Equations
Instances For
    def instFamilyPow {A : Type u_1} {G : Type u_2} [CommMonoid A] [Zero G] [Pow A G] {ι : Type u_3} :
    HPow (ιA) (ι →₀ G) A
    Equations
    Instances For
      theorem familyPow_def {A : Type u_1} {G : Type u_2} [CommMonoid A] [Zero G] [Pow A G] {ι : Type u_3} (f : ιA) (v : ι →₀ G) :
      f ^ v = v.prod fun (i : ι) (k : G) => f i ^ k
      theorem familyPow_add {A : Type u_1} [CommMonoid A] {ι : Type u_3} (f : ιA) (v w : ι →₀ ) :
      f ^ (v + w) = f ^ v * f ^ w
      @[simp]
      theorem familyPow_zero {A : Type u_1} [CommMonoid A] {ι : Type u_3} (f : ιA) :
      f ^ 0 = 1
      theorem Ideal.familyPow_def {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) (v : ι →₀ ) :
      F ^ v = v.prod fun (i : ι) (k : ) => F i ^ k
      theorem Ideal.mem_familyPow_add {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} {v w : ι →₀ } {x y : A} (hx : x F ^ v) (hy : y F ^ w) :
      x * y F ^ (v + w)
      theorem Ideal.mem_familyPow_of_mem {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} {a : ιA} {v : ι →₀ } (mem : iv.support, a i F i) :
      a ^ v F ^ v