Documentation

Project.ForMathlib.Ideal

structure CommSemigroup.Ideal (A : Type u_1) [CommSemigroup A] :
Type u_1
  • carrier : Set A
  • is_ideal (a b : A) : a self.carriera * b self.carrier
Instances For
    Equations
    theorem CommSemigroup.Ideal.mul_mem_left {A : Type u_1} [CommSemigroup A] (I : CommSemigroup.Ideal A) {a : A} (ha : a I) (b : A) :
    a * b I
    theorem CommSemigroup.Ideal.mul_mem_right {A : Type u_1} [CommSemigroup A] (I : CommSemigroup.Ideal A) (a : A) {b : A} (hb : b I) :
    a * b I
    Equations
    • I.asSubsemigroup = { carrier := I, mul_mem' := }
    Instances For
      theorem CommSemigroup.Ideal.le_iff {A : Type u_1} [CommSemigroup A] {I J : CommSemigroup.Ideal A} :
      I J I J
      Equations
      @[simp]
      theorem CommSemigroup.Ideal.coe_sup {A : Type u_1} [CommSemigroup A] (I J : CommSemigroup.Ideal A) :
      (I J) = I J
      theorem CommSemigroup.Ideal.mem_sup {A : Type u_1} [CommSemigroup A] {I J : CommSemigroup.Ideal A} {x : A} :
      x I J x I x J
      Equations
      @[simp]
      theorem CommSemigroup.Ideal.coe_inf {A : Type u_1} [CommSemigroup A] (I J : CommSemigroup.Ideal A) :
      (I J) = I J
      theorem CommSemigroup.Ideal.mem_inf {A : Type u_1} [CommSemigroup A] {I J : CommSemigroup.Ideal A} {x : A} :
      x I J x I x J
      Equations
      @[simp]
      theorem CommSemigroup.Ideal.coe_sSup {A : Type u_1} [CommSemigroup A] (S : Set (CommSemigroup.Ideal A)) :
      (sSup S) = IS, I
      theorem CommSemigroup.Ideal.mem_sSup {A : Type u_1} [CommSemigroup A] {S : Set (CommSemigroup.Ideal A)} {x : A} :
      x sSup S IS, x I
      @[simp]
      theorem CommSemigroup.Ideal.coe_biSup {A : Type u_1} [CommSemigroup A] (S : Set (CommSemigroup.Ideal A)) :
      (⨆ IS, I) = IS, I
      theorem CommSemigroup.Ideal.mem_biSup {A : Type u_1} [CommSemigroup A] {S : Set (CommSemigroup.Ideal A)} {x : A} :
      x IS, I IS, x I
      @[simp]
      theorem CommSemigroup.Ideal.coe_iSup {A : Type u_1} [CommSemigroup A] {ι : Type u_2} (f : ιCommSemigroup.Ideal A) :
      (⨆ (i : ι), f i) = ⋃ (i : ι), (f i)
      theorem CommSemigroup.Ideal.mem_iSup {A : Type u_1} [CommSemigroup A] {ι : Type u_2} {f : ιCommSemigroup.Ideal A} {x : A} :
      x ⨆ (i : ι), f i ∃ (i : ι), x f i
      Equations
      @[simp]
      theorem CommSemigroup.Ideal.coe_sInf {A : Type u_1} [CommSemigroup A] (S : Set (CommSemigroup.Ideal A)) :
      (sInf S) = IS, I
      theorem CommSemigroup.Ideal.mem_sInf {A : Type u_1} [CommSemigroup A] {S : Set (CommSemigroup.Ideal A)} {x : A} :
      x sInf S IS, x I
      @[simp]
      theorem CommSemigroup.Ideal.coe_biInf {A : Type u_1} [CommSemigroup A] (S : Set (CommSemigroup.Ideal A)) :
      (⨅ IS, I) = IS, I
      theorem CommSemigroup.Ideal.mem_biInf {A : Type u_1} [CommSemigroup A] {S : Set (CommSemigroup.Ideal A)} {x : A} :
      x IS, I IS, x I
      @[simp]
      theorem CommSemigroup.Ideal.coe_iInf {A : Type u_1} [CommSemigroup A] {ι : Type u_2} (f : ιCommSemigroup.Ideal A) :
      (⨅ (i : ι), f i) = ⋂ (i : ι), (f i)
      theorem CommSemigroup.Ideal.mem_iInf {A : Type u_1} [CommSemigroup A] {ι : Type u_2} {f : ιCommSemigroup.Ideal A} {x : A} :
      x ⨅ (i : ι), f i ∀ (i : ι), x f i
      Equations
      Equations
      @[simp]
      theorem CommSemigroup.Ideal.not_mem_bot {A : Type u_1} [CommSemigroup A] (x : A) :
      x
      theorem CommSemigroup.Ideal.closure_eq {A : Type u_1} [CommSemigroup A] (s : Set A) :
      CommSemigroup.Ideal.closure s = { carrier := s s * Set.univ, is_ideal := }
      theorem CommSemigroup.Ideal.closure_induction {A : Type u_1} [CommSemigroup A] {s : Set A} {p : AProp} (basic : xs, p x) (ideal : ∀ (x y : A), x sp xp (x * y)) (x : A) :
      theorem CommSemigroup.Ideal.closure_induction' {A : Type u_1} [CommSemigroup A] {s : Set A} {p : (a : A) → a CommSemigroup.Ideal.closure sProp} (basic : ∀ (x : A) (h : x s), p x ) (ideal : ∀ (x y : A) (h : x s), p x p (x * y) ) (x : A) (h : x CommSemigroup.Ideal.closure s) :
      p x h