- carrier : Set A
Instances For
instance
CommSemigroup.Ideal.instSetLike
{A : Type u_1}
[CommSemigroup A]
:
SetLike (CommSemigroup.Ideal A) A
Equations
- CommSemigroup.Ideal.instSetLike = { coe := fun (a : CommSemigroup.Ideal A) => a.carrier, coe_injective' := ⋯ }
theorem
CommSemigroup.Ideal.mul_mem_left
{A : Type u_1}
[CommSemigroup A]
(I : CommSemigroup.Ideal A)
{a : A}
(ha : a ∈ I)
(b : A)
:
theorem
CommSemigroup.Ideal.mul_mem_right
{A : Type u_1}
[CommSemigroup A]
(I : CommSemigroup.Ideal A)
(a : A)
{b : A}
(hb : b ∈ I)
:
def
CommSemigroup.Ideal.asSubsemigroup
{A : Type u_1}
[CommSemigroup A]
(I : CommSemigroup.Ideal A)
:
Equations
- I.asSubsemigroup = { carrier := ↑I, mul_mem' := ⋯ }
Instances For
Equations
- CommSemigroup.Ideal.instMax = { max := fun (I J : CommSemigroup.Ideal A) => { carrier := ↑I ∪ ↑J, is_ideal := ⋯ } }
@[simp]
theorem
CommSemigroup.Ideal.coe_sup
{A : Type u_1}
[CommSemigroup A]
(I J : CommSemigroup.Ideal A)
:
theorem
CommSemigroup.Ideal.mem_sup
{A : Type u_1}
[CommSemigroup A]
{I J : CommSemigroup.Ideal A}
{x : A}
:
Equations
- CommSemigroup.Ideal.instMin = { min := fun (I J : CommSemigroup.Ideal A) => { carrier := ↑I ∩ ↑J, is_ideal := ⋯ } }
@[simp]
theorem
CommSemigroup.Ideal.coe_inf
{A : Type u_1}
[CommSemigroup A]
(I J : CommSemigroup.Ideal A)
:
theorem
CommSemigroup.Ideal.mem_inf
{A : Type u_1}
[CommSemigroup A]
{I J : CommSemigroup.Ideal A}
{x : A}
:
Equations
- CommSemigroup.Ideal.instSemilatticeSup = SemilatticeSup.mk (fun (a b : CommSemigroup.Ideal A) => a ⊔ b) ⋯ ⋯ ⋯
Equations
- CommSemigroup.Ideal.instSemilatticeInf = SemilatticeInf.mk (fun (a b : CommSemigroup.Ideal A) => a ⊓ b) ⋯ ⋯ ⋯
Equations
- CommSemigroup.Ideal.instSupSet = { sSup := fun (S : Set (CommSemigroup.Ideal A)) => { carrier := ⋃ I ∈ S, ↑I, is_ideal := ⋯ } }
@[simp]
theorem
CommSemigroup.Ideal.coe_sSup
{A : Type u_1}
[CommSemigroup A]
(S : Set (CommSemigroup.Ideal A))
:
theorem
CommSemigroup.Ideal.mem_sSup
{A : Type u_1}
[CommSemigroup A]
{S : Set (CommSemigroup.Ideal A)}
{x : A}
:
@[simp]
theorem
CommSemigroup.Ideal.coe_biSup
{A : Type u_1}
[CommSemigroup A]
(S : Set (CommSemigroup.Ideal A))
:
↑(⨆ I ∈ S, I) = ⋃ I ∈ S, ↑I
theorem
CommSemigroup.Ideal.mem_biSup
{A : Type u_1}
[CommSemigroup A]
{S : Set (CommSemigroup.Ideal A)}
{x : A}
:
@[simp]
theorem
CommSemigroup.Ideal.coe_iSup
{A : Type u_1}
[CommSemigroup A]
{ι : Type u_2}
(f : ι → CommSemigroup.Ideal A)
:
↑(⨆ (i : ι), f i) = ⋃ (i : ι), ↑(f i)
theorem
CommSemigroup.Ideal.mem_iSup
{A : Type u_1}
[CommSemigroup A]
{ι : Type u_2}
{f : ι → CommSemigroup.Ideal A}
{x : A}
:
Equations
- CommSemigroup.Ideal.instInfSet = { sInf := fun (S : Set (CommSemigroup.Ideal A)) => { carrier := ⋂ I ∈ S, ↑I, is_ideal := ⋯ } }
@[simp]
theorem
CommSemigroup.Ideal.coe_sInf
{A : Type u_1}
[CommSemigroup A]
(S : Set (CommSemigroup.Ideal A))
:
theorem
CommSemigroup.Ideal.mem_sInf
{A : Type u_1}
[CommSemigroup A]
{S : Set (CommSemigroup.Ideal A)}
{x : A}
:
@[simp]
theorem
CommSemigroup.Ideal.coe_biInf
{A : Type u_1}
[CommSemigroup A]
(S : Set (CommSemigroup.Ideal A))
:
↑(⨅ I ∈ S, I) = ⋂ I ∈ S, ↑I
theorem
CommSemigroup.Ideal.mem_biInf
{A : Type u_1}
[CommSemigroup A]
{S : Set (CommSemigroup.Ideal A)}
{x : A}
:
@[simp]
theorem
CommSemigroup.Ideal.coe_iInf
{A : Type u_1}
[CommSemigroup A]
{ι : Type u_2}
(f : ι → CommSemigroup.Ideal A)
:
↑(⨅ (i : ι), f i) = ⋂ (i : ι), ↑(f i)
theorem
CommSemigroup.Ideal.mem_iInf
{A : Type u_1}
[CommSemigroup A]
{ι : Type u_2}
{f : ι → CommSemigroup.Ideal A}
{x : A}
:
Equations
Equations
- CommSemigroup.Ideal.instTop = { top := { carrier := Set.univ, is_ideal := ⋯ } }
@[simp]
Equations
- CommSemigroup.Ideal.instBot = { bot := { carrier := ∅, is_ideal := ⋯ } }
@[simp]
Equations
Equations
- CommSemigroup.Ideal.closure s = sInf {I : CommSemigroup.Ideal A | s ⊆ ↑I}
Instances For
theorem
CommSemigroup.Ideal.closure_eq_sInf
{A : Type u_1}
[CommSemigroup A]
(s : Set A)
:
CommSemigroup.Ideal.closure s = sInf {I : CommSemigroup.Ideal A | s ⊆ ↑I}
theorem
CommSemigroup.Ideal.subset_closure
{A : Type u_1}
[CommSemigroup A]
(s : Set A)
:
s ⊆ ↑(CommSemigroup.Ideal.closure s)
theorem
CommSemigroup.Ideal.closure_eq
{A : Type u_1}
[CommSemigroup A]
(s : Set A)
:
CommSemigroup.Ideal.closure s = { carrier := s ∪ s * Set.univ, is_ideal := ⋯ }
theorem
CommSemigroup.Ideal.closure_induction
{A : Type u_1}
[CommSemigroup A]
{s : Set A}
{p : A → Prop}
(basic : ∀ x ∈ s, p x)
(ideal : ∀ (x y : A), x ∈ s → p x → p (x * y))
(x : A)
:
x ∈ CommSemigroup.Ideal.closure s → p x
theorem
CommSemigroup.Ideal.closure_induction'
{A : Type u_1}
[CommSemigroup A]
{s : Set A}
{p : (a : A) → a ∈ CommSemigroup.Ideal.closure s → Prop}
(basic : ∀ (x : A) (h : x ∈ s), p x ⋯)
(ideal : ∀ (x y : A) (h : x ∈ s), p x ⋯ → p (x * y) ⋯)
(x : A)
(h : x ∈ CommSemigroup.Ideal.closure s)
:
p x h