@[simp]
theorem
AlgebraicGeometry.IsOpenImmersion.isoRestrict_hom_ofRestrict
{X Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Z)
[H : AlgebraicGeometry.IsOpenImmersion f]
:
CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.IsOpenImmersion.isoRestrict f).hom (Z.ofRestrict ⋯) = f
@[simp]
theorem
AlgebraicGeometry.IsOpenImmersion.isoRestrict_hom_ofRestrict_assoc
{X Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Z)
[H : AlgebraicGeometry.IsOpenImmersion f]
{Z✝ : AlgebraicGeometry.Scheme}
(h : Z ⟶ Z✝)
:
CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.IsOpenImmersion.isoRestrict f).hom
(CategoryTheory.CategoryStruct.comp (Z.ofRestrict ⋯) h) = CategoryTheory.CategoryStruct.comp f h
theorem
AlgebraicGeometry.Scheme.Hom.stalkMap_comp
{X Y Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
(x : ↑↑X.toPresheafedSpace)
:
instance
AlgebraicGeometry.Scheme.Hom.stalkMap.isIso
{X Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(x : ↑↑X.toPresheafedSpace)
[CategoryTheory.IsIso f]
:
theorem
AlgebraicGeometry.Scheme.Hom.ext_iff
{X Y : AlgebraicGeometry.Scheme}
(f g : X ⟶ Y)
:
f = g ↔ ∃ (h_base : f.base = g.base),
∀ (U : Y.Opens),
CategoryTheory.CategoryStruct.comp (AlgebraicGeometry.Scheme.Hom.app f U)
(X.presheaf.map (CategoryTheory.eqToHom ⋯).op) = AlgebraicGeometry.Scheme.Hom.app g U
theorem
AlgebraicGeometry.Scheme.Hom.comp_c_app
{X Y Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
(U : Z.Opens)
:
(CategoryTheory.CategoryStruct.comp f g).c.app (Opposite.op U) = CategoryTheory.CategoryStruct.comp (g.c.app (Opposite.op U))
(f.c.app ((TopologicalSpace.Opens.map g.base).op.obj (Opposite.op U)))