Documentation

Project.ForMathlib.SubgroupBasic

theorem Subgroup.closure_submonoid {G : Type u_1} [CommGroup G] (N : Submonoid G) :
(Subgroup.closure N) = {x : G | ∃ (a : N) (b : N), x = a * (↑b)⁻¹}
theorem AddSubgroup.closure_addSubmonoid {G : Type u_1} [AddCommGroup G] (N : AddSubmonoid G) :
(AddSubgroup.closure N) = {x : G | ∃ (a : N) (b : N), x = a + -b}
theorem Subgroup.FG.map {A : Type u_2} {B : Type u_3} [Group A] [Group B] {S : Subgroup A} (h : S.FG) (f : A →* B) :
(Subgroup.map f S).FG
theorem AddSubgroup.FG.map {A : Type u_2} {B : Type u_3} [AddGroup A] [AddGroup B] {S : AddSubgroup A} (h : S.FG) (f : A →+ B) :
theorem Submonoid.mem_closure_iff (M : Type u_2) [CommMonoid M] (S : Set M) (x : M) :
x Submonoid.closure S ∃ (n : M →₀ ) (_ : in.support, i S), (n.prod fun (y : M) (i : ) => y ^ i) = x