Documentation

Project.Grading.GradedRingHom

structure GradedRingHom {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [CommSemiring A] [SetLike σ A] (𝒜 : ισ) [CommSemiring B] [SetLike τ B] (ℬ : ιτ) extends A →+* B :
Type (max u_2 u_3)
  • toFun : AB
  • map_one' : (↑self.toRingHom).toFun 1 = 1
  • map_mul' (x y : A) : (↑self.toRingHom).toFun (x * y) = (↑self.toRingHom).toFun x * (↑self.toRingHom).toFun y
  • map_zero' : (↑self.toRingHom).toFun 0 = 0
  • map_add' (x y : A) : (↑self.toRingHom).toFun (x + y) = (↑self.toRingHom).toFun x + (↑self.toRingHom).toFun y
  • map_mem' {i : ι} {x : A} : x 𝒜 i(↑self.toRingHom).toFun x i
Instances For
    instance GradedRingHom.instFunLike {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [CommSemiring A] [SetLike σ A] (𝒜 : ισ) [CommSemiring B] [SetLike τ B] (ℬ : ιτ) :
    FunLike (GradedRingHom 𝒜 ) A B
    Equations
    instance GradedRingHom.instRingHomClass {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [CommSemiring A] [SetLike σ A] (𝒜 : ισ) [CommSemiring B] [SetLike τ B] (ℬ : ιτ) :
    theorem GradedRingHom.map_mem {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [CommSemiring A] [SetLike σ A] {𝒜 : ισ} [CommSemiring B] [SetLike τ B] {ℬ : ιτ} (f : GradedRingHom 𝒜 ) {i : ι} {x : A} (hx : x 𝒜 i) :
    f x i
    theorem GradedRingHom.map_homogeneous {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [CommSemiring A] [SetLike σ A] {𝒜 : ισ} [CommSemiring B] [SetLike τ B] {ℬ : ιτ} (f : GradedRingHom 𝒜 ) {a : A} (hom_a : SetLike.Homogeneous 𝒜 a) :
    def GradedRingHom.asDirectSum {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommMonoid ι] [DecidableEq ι] [CommSemiring A] [SetLike σ A] [AddSubmonoidClass σ A] {𝒜 : ισ} [GradedRing 𝒜] [CommSemiring B] [SetLike τ B] [AddSubmonoidClass τ B] {ℬ : ιτ} [GradedRing ] (f : GradedRingHom 𝒜 ) :
    (DirectSum ι fun (i : ι) => (𝒜 i)) →+* DirectSum ι fun (i : ι) => ( i)
    Equations
    • f.asDirectSum = DirectSum.toSemiring (fun (i : ι) => { toFun := fun (x : (𝒜 i)) => (DirectSum.of (fun (i : ι) => ( i)) i) f x, , map_zero' := , map_add' := })
    Instances For
      @[simp]
      theorem GradedRingHom.asDirectSum_apply_of {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommMonoid ι] [DecidableEq ι] [CommSemiring A] [SetLike σ A] [AddSubmonoidClass σ A] {𝒜 : ισ} [GradedRing 𝒜] [CommSemiring B] [SetLike τ B] [AddSubmonoidClass τ B] {ℬ : ιτ} [GradedRing ] (f : GradedRingHom 𝒜 ) {i : ι} (x : (𝒜 i)) :
      f.asDirectSum ((DirectSum.of (fun (i : ι) => (𝒜 i)) i) x) = (DirectSum.of (fun (i : ι) => ( i)) i) f x,
      theorem GradedRingHom.commutes {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommMonoid ι] [DecidableEq ι] [CommSemiring A] [SetLike σ A] [AddSubmonoidClass σ A] {𝒜 : ισ} [GradedRing 𝒜] [CommSemiring B] [SetLike τ B] [AddSubmonoidClass τ B] {ℬ : ιτ} [GradedRing ] (f : GradedRingHom 𝒜 ) :
      (DirectSum.decompose ) f = f.asDirectSum (DirectSum.decompose 𝒜)
      theorem GradedRingHom.commutes_apply {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommMonoid ι] [DecidableEq ι] [CommSemiring A] [SetLike σ A] [AddSubmonoidClass σ A] {𝒜 : ισ} [GradedRing 𝒜] [CommSemiring B] [SetLike τ B] [AddSubmonoidClass τ B] {ℬ : ιτ} [GradedRing ] (f : GradedRingHom 𝒜 ) (x : A) :
      (DirectSum.decompose ) (f x) = f.asDirectSum ((DirectSum.decompose 𝒜) x)
      @[simp]
      theorem GradedRingHom.decompose_apply_decompose {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommMonoid ι] [DecidableEq ι] [CommSemiring A] [SetLike σ A] [AddSubmonoidClass σ A] {𝒜 : ισ} [GradedRing 𝒜] [CommSemiring B] [SetLike τ B] [AddSubmonoidClass τ B] {ℬ : ιτ} [GradedRing ] (f : GradedRingHom 𝒜 ) (x : A) (i : ι) :
      (DirectSum.decompose ) (f (((DirectSum.decompose 𝒜) x) i)) = (DirectSum.of (fun (i : ι) => ( i)) i) f (((DirectSum.decompose 𝒜) x) i),
      theorem GradedRingHom.homogeneous_of_apply_homogeneous {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommMonoid ι] [DecidableEq ι] [CommSemiring A] [SetLike σ A] [AddSubmonoidClass σ A] {𝒜 : ισ} [GradedRing 𝒜] [CommSemiring B] [SetLike τ B] [AddSubmonoidClass τ B] {ℬ : ιτ} [GradedRing ] (f : GradedRingHom 𝒜 ) {i : ι} {a : A} (hom : f a i) :
      a'𝒜 i, f a' = f a
      structure GradedRingEquiv {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [CommSemiring A] [SetLike σ A] (𝒜 : ισ) [CommSemiring B] [SetLike τ B] (ℬ : ιτ) extends A ≃+* B :
      Type (max u_2 u_3)
      Instances For
        instance GradedRingEquiv.instEquivLike {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [CommSemiring A] [SetLike σ A] (𝒜 : ισ) [CommSemiring B] [SetLike τ B] (ℬ : ιτ) :
        EquivLike (GradedRingEquiv 𝒜 ) A B
        Equations
        theorem GradedRingEquiv.map_mem {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [CommSemiring A] [SetLike σ A] {𝒜 : ισ} [CommSemiring B] [SetLike τ B] {ℬ : ιτ} (f : GradedRingEquiv 𝒜 ) {i : ι} {x : A} (hx : x 𝒜 i) :
        f x i
        theorem GradedRingEquiv.inv_mem {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [CommSemiring A] [SetLike σ A] {𝒜 : ισ} [CommSemiring B] [SetLike τ B] {ℬ : ιτ} (f : GradedRingEquiv 𝒜 ) {i : ι} {y : B} (hy : y i) :
        f.invFun y 𝒜 i
        def GradedRingEquiv.toGradedRingHom {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [CommSemiring A] [SetLike σ A] (𝒜 : ισ) [CommSemiring B] [SetLike τ B] (ℬ : ιτ) (f : GradedRingEquiv 𝒜 ) :
        GradedRingHom 𝒜
        Equations
        Instances For
          @[simp]
          theorem GradedRingEquiv.toGradedRingHom_toFun {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {τ : Type u_5} [CommSemiring A] [SetLike σ A] (𝒜 : ισ) [CommSemiring B] [SetLike τ B] (ℬ : ιτ) (f : GradedRingEquiv 𝒜 ) (a : A) :
          def GradedRingEquiv.refl {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [CommSemiring A] [SetLike σ A] (𝒜 : ισ) :
          GradedRingEquiv 𝒜 𝒜
          Equations
          Instances For
            theorem GradedRingEquiv.refl_toRingEquiv {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [CommSemiring A] [SetLike σ A] (𝒜 : ισ) :