Documentation

Project.Dilatation.ReesAlgebra

structure ReesAlgebra {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) :
Type (max u_1 u_2)
Instances For
    theorem ReesAlgebra.ext {A : Type u_1} {inst✝ : CommSemiring A} {ι : Type u_2} {F : ιIdeal A} {x y : ReesAlgebra F} (val : x.val = y.val) :
    x = y
    noncomputable instance ReesAlgebra.instZero {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) :
    Equations
    theorem ReesAlgebra.zero_def {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) :
    0 = { val := 0 }
    noncomputable instance ReesAlgebra.instSMulNat {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) :
    Equations
    theorem ReesAlgebra.nsmul_def {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) (n : ) (x : ReesAlgebra F) :
    n x = { val := n x.val }
    noncomputable instance ReesAlgebra.instAdd {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) :
    Equations
    theorem ReesAlgebra.add_def {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) {x y : ReesAlgebra F} :
    x + y = { val := x.val + y.val }
    theorem ReesAlgebra.add_val {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) {x y : ReesAlgebra F} :
    (x + y).val = x.val + y.val
    noncomputable def ReesAlgebra.mul' {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
    (DirectSum (ι →₀ ) fun (v : ι →₀ ) => (F ^ v)) →+ (DirectSum (ι →₀ ) fun (v : ι →₀ ) => (F ^ v)) →+ DirectSum (ι →₀ ) fun (v : ι →₀ ) => (F ^ v)
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem ReesAlgebra.mul'_of_of {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] (v w : ι →₀ ) (x : (F ^ v)) (y : (F ^ w)) :
      (ReesAlgebra.mul' ((DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) v) x)) ((DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) w) y) = (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) (v + w)) x * y,
      noncomputable instance ReesAlgebra.instMul {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
      Equations
      theorem ReesAlgebra.mul_def {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] (x y : ReesAlgebra F) :
      x * y = { val := (ReesAlgebra.mul' x.val) y.val }
      theorem ReesAlgebra.mul_val {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] (x y : ReesAlgebra F) :
      (x * y).val = (ReesAlgebra.mul' x.val) y.val
      @[simp]
      theorem ReesAlgebra.mul_of_of {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] (v w : ι →₀ ) (x : (F ^ v)) (y : (F ^ w)) :
      { val := (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) v) x } * { val := (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) w) y } = { val := (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) (v + w)) x * y, }
      noncomputable instance ReesAlgebra.instOne {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
      Equations
      theorem ReesAlgebra.one_def {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
      1 = { val := (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) 0) 1, }
      theorem ReesAlgebra.one_val {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
      ReesAlgebra.val 1 = (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) 0) 1,
      theorem ReesAlgebra.induction_on {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] (P : ReesAlgebra FProp) (H_zero : P 0) (H_basic : ∀ (v : ι →₀ ) (x : (F ^ v)), P { val := (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) v) x }) (H_plus : ∀ (x y : ReesAlgebra F), P xP yP (x + y)) (x : ReesAlgebra F) :
      P x
      noncomputable instance ReesAlgebra.instSemigroup {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
      Equations
      noncomputable instance ReesAlgebra.instMulOneClass {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
      Equations
      noncomputable instance ReesAlgebra.instMonoid {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
      Equations
      noncomputable instance ReesAlgebra.instCommMonoid {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
      Equations
      noncomputable instance ReesAlgebra.instMonoidWithZero {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
      Equations
      noncomputable instance ReesAlgebra.instCommSemiring {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
      Equations
      noncomputable def ReesAlgebra.algebraMap' {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) [DecidableEq ι] :
      Equations
      Instances For
        @[simp]
        theorem ReesAlgebra.algebraMap'_apply_val {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) [DecidableEq ι] (a : A) :
        ((ReesAlgebra.algebraMap' F) a).val = (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) 0) a,
        noncomputable instance ReesAlgebra.instAlgebra {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] :
        Equations
        theorem ReesAlgebra.algebraMap_apply_val {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] (a : A) :
        ((algebraMap A (ReesAlgebra F)) a).val = (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) 0) a,
        theorem ReesAlgebra.algebraMap'_apply {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] (a : A) :
        (ReesAlgebra.algebraMap' F) a = { val := (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) 0) a, }
        theorem ReesAlgebra.smul_of {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] (a : A) (v : ι →₀ ) (x : (F ^ v)) :
        a { val := (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) v) x } = { val := (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) v) (a x) }
        theorem ReesAlgebra.smul_of_val {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] (a : A) (v : ι →₀ ) (x : (F ^ v)) :
        (a { val := (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) v) x }).val = (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) v) (a x)
        theorem ReesAlgebra.smul_val {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] (a : A) (x : ReesAlgebra F) :
        (a x).val = a x.val
        noncomputable def ReesAlgebra.single {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) [DecidableEq ι] (v : ι →₀ ) :
        (F ^ v) →ₗ[A] ReesAlgebra F
        Equations
        Instances For
          @[simp]
          theorem ReesAlgebra.single_apply_val {A : Type u_1} [CommSemiring A] {ι : Type u_2} (F : ιIdeal A) [DecidableEq ι] (v : ι →₀ ) (x : (F ^ v)) :
          ((ReesAlgebra.single F v) x).val = (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) v) x
          theorem ReesAlgebra.single_def {A : Type u_1} [CommSemiring A] {ι : Type u_2} {F : ιIdeal A} [DecidableEq ι] (v : ι →₀ ) (x : (F ^ v)) :
          (ReesAlgebra.single F v) x = { val := (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) v) x }
          noncomputable instance ReesAlgebra.instNeg {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) :
          Equations
          theorem ReesAlgebra.neg_def {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) (x : ReesAlgebra F) :
          -x = { val := -x.val }
          noncomputable instance ReesAlgebra.instSub {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) :
          Equations
          theorem ReesAlgebra.sub_def {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) (x y : ReesAlgebra F) :
          x - y = { val := x.val - y.val }
          noncomputable instance ReesAlgebra.instSMulInt {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) :
          Equations
          theorem ReesAlgebra.zsmul_def {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) (n : ) (x : ReesAlgebra F) :
          n x = { val := n x.val }
          noncomputable instance ReesAlgebra.instAddCommGroup {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) :
          Equations
          noncomputable instance ReesAlgebra.instCommRing {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) [DecidableEq ι] :
          Equations
          noncomputable def ReesAlgebra.grading {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) [DecidableEq ι] (v : ι →₀ ) :
          Equations
          Instances For
            noncomputable def ReesAlgebra.decomposeAux {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) [DecidableEq ι] :
            (DirectSum (ι →₀ ) fun (v : ι →₀ ) => (F ^ v)) →ₗ[A] DirectSum (ι →₀ ) fun (v : ι →₀ ) => (ReesAlgebra.grading F v)
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              noncomputable def ReesAlgebra.decompose {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) [DecidableEq ι] :
              Equations
              Instances For
                @[simp]
                theorem ReesAlgebra.decompose_single {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) [DecidableEq ι] (v : ι →₀ ) (x : (F ^ v)) :
                (ReesAlgebra.decompose F) ((ReesAlgebra.single F v) x) = (DirectSum.of (fun (v : ι →₀ ) => (ReesAlgebra.grading F v)) v) (ReesAlgebra.single F v) x,
                @[simp]
                theorem ReesAlgebra.decompose_val_of {A : Type u_1} [CommRing A] {ι : Type u_2} (F : ιIdeal A) [DecidableEq ι] (v : ι →₀ ) (x : (F ^ v)) :
                (ReesAlgebra.decompose F) { val := (DirectSum.of (fun (v : ι →₀ ) => (F ^ v)) v) x } = (DirectSum.of (fun (v : ι →₀ ) => (ReesAlgebra.grading F v)) v) (ReesAlgebra.single F v) x,