Documentation

Project.ForMathlib.Submonoid

instance Submonoid.instMul {A : Type u_1} [CommMonoid A] :
Equations
Equations
theorem Submonoid.mem_mul_iff {A : Type u_1} [CommMonoid A] {S T : Submonoid A} {x : A} :
x S * T yS, zT, y * z = x
theorem AddSubmonoid.mem_add_iff {A : Type u_1} [AddCommMonoid A] {S T : AddSubmonoid A} {x : A} :
x S + T yS, zT, y + z = x
theorem Submonoid.left_le_mul {A : Type u_1} [CommMonoid A] {S T : Submonoid A} :
S S * T
theorem Submonoid.right_le_mul {A : Type u_1} [CommMonoid A] {S T : Submonoid A} :
T S * T
theorem Submonoid.mul_le_mul {A : Type u_1} [CommMonoid A] {S S' T T' : Submonoid A} (hS : S S') (hT : T T') :
S * T S' * T'
instance Submonoid.instOne {A : Type u_1} [CommMonoid A] :
Equations
@[simp]
theorem Submonoid.mul_self {A : Type u_1} [CommMonoid A] (S : Submonoid A) :
S * S = S
theorem Submonoid.FG.mul {A : Type u_1} [CommMonoid A] {S T : Submonoid A} (hS : S.FG) (hT : T.FG) :
(S * T).FG
theorem Submonoid.map_mul {A : Type u_2} {B : Type u_3} [CommMonoid A] [CommMonoid B] (f : A →* B) (S T : Submonoid A) :
theorem Localization.prod_mk {A : Type u_1} [CommRing A] (S : Submonoid A) {ι : Type u_4} (s : Finset ι) (t : ιA) (t' : ιS) :
is, Localization.mk (t i) (t' i) = Localization.mk (∏ is, t i) (∏ is, t' i)
theorem Localization.split_den {A : Type u_1} [CommRing A] (S : Submonoid A) (x : A) (s t : S) :
@[simp]
theorem Localization.mulToTensor_mk {A : Type u_1} [CommRing A] {S T : Submonoid A} (a s t : A) (hs : s S) (ht : t T) :
(Localization.mulToTensor S T) (Localization.mk a s * t, ) = Localization.mk a s, hs ⊗ₜ[A] Localization.mk 1 t, ht
@[simp]
theorem Localization.mulToTensor_mk' {A : Type u_1} [CommRing A] {S T : Submonoid A} (a s : A) (hs : s S) :
(Localization.mulToTensor S T) (Localization.mk a s, ) = Localization.mk a s, hs ⊗ₜ[A] 1
@[simp]
theorem Localization.mulToTensor_mk'' {A : Type u_1} [CommRing A] {S T : Submonoid A} (a t : A) (ht : t T) :
@[simp]
theorem Localization.tensorToLocalization_tmul_mk_mk {A : Type u_1} [CommRing A] (S T : Submonoid A) (a b : A) (s : S) (t : T) :
@[simp]
theorem Localization.tensorToLocalization_tmul_mk_one {A : Type u_1} [CommRing A] (S T : Submonoid A) (a : A) (s : S) :
@[simp]
theorem Localization.tensorToLocalization_tmul_one_mk {A : Type u_1} [CommRing A] (S T : Submonoid A) (b : A) (t : T) :
noncomputable def Localization.mapEq {A : Type u_1} [CommRing A] {S T : Submonoid A} (eq : S = T) :
Equations
Instances For
    @[simp]
    theorem Localization.mapEq_mk {A : Type u_1} [CommRing A] (S T : Submonoid A) (eq : S = T) (x : A) (y : S) :
    noncomputable def Localization.equivEq {A : Type u_1} [CommRing A] {S T : Submonoid A} (eq : S = T) :
    Equations
    Instances For
      @[simp]
      theorem Localization.equivEq_apply {A : Type u_1} [CommRing A] (S T : Submonoid A) (eq : S = T) (x : Localization S) :
      @[simp]
      theorem Localization.equivEq_symm_apply {A : Type u_1} [CommRing A] (S T : Submonoid A) (eq : S = T) (x : Localization T) :