Documentation

Project.Grading.Localization

structure HomogeneousSubmonoid.PreLocalizationGrading {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) (i : ι) :
Type (max u_1 u_2)
  • num : A
  • den : S.toSubmonoid
  • degNum : ι
  • degDen : ι
  • num_mem : self.num 𝒜 self.degNum
  • den_mem : self.den 𝒜 self.degDen
  • deg_frac_eq : self.degNum - self.degDen = i
Instances For
    theorem HomogeneousSubmonoid.PreLocalizationGrading.ext {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) {i : ι} (x y : S.PreLocalizationGrading i) (num_eq : x.num = y.num) (den_eq : x.den = y.den) (degNum_eq : x.degNum = y.degNum) (degDen_eq : x.degDen = y.degDen) :
    x = y
    instance HomogeneousSubmonoid.PreLocalizationGrading.instNeg {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] (i : ι) :
    Neg (S.PreLocalizationGrading i)
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizationGrading.neg_num {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] {i : ι} (x : S.PreLocalizationGrading i) :
    (-x).num = -x.num
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizationGrading.neg_den {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] {i : ι} (x : S.PreLocalizationGrading i) :
    (-x).den = x.den
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizationGrading.neg_degNum {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] {i : ι} (x : S.PreLocalizationGrading i) :
    (-x).degNum = x.degNum
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizationGrading.neg_degDen {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] {i : ι} (x : S.PreLocalizationGrading i) :
    (-x).degDen = x.degDen
    instance HomogeneousSubmonoid.PreLocalizationGrading.instAdd {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] (i : ι) :
    Add (S.PreLocalizationGrading i)
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizationGrading.add_num {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] {i : ι} (x y : S.PreLocalizationGrading i) :
    (x + y).num = x.den * y.num + y.den * x.num
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizationGrading.add_den {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] {i : ι} (x y : S.PreLocalizationGrading i) :
    (x + y).den = x.den * y.den
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizationGrading.add_degNum {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] {i : ι} (x y : S.PreLocalizationGrading i) :
    (x + y).degNum = x.degDen + y.degNum
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizationGrading.add_degDen {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] {i : ι} (x y : S.PreLocalizationGrading i) :
    (x + y).degDen = x.degDen + y.degDen
    instance HomogeneousSubmonoid.PreLocalizationGrading.instOneOfNat {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] :
    One (S.PreLocalizationGrading 0)
    Equations
    instance HomogeneousSubmonoid.PreLocalizationGrading.instZero {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] (i : ι) :
    Zero (S.PreLocalizationGrading i)
    Equations
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizationGrading.zero_num {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] {i : ι} :
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizationGrading.zero_den {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] {i : ι} :
    @[simp]
    @[simp]
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizationGrading.neg_zero {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] {i : ι} :
    -0 = 0
    instance HomogeneousSubmonoid.PreLocalizationGrading.instAddZeroClass {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] (i : ι) :
    AddZeroClass (S.PreLocalizationGrading i)
    Equations
    instance HomogeneousSubmonoid.PreLocalizationGrading.instAddSemigroup {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] (i : ι) :
    AddSemigroup (S.PreLocalizationGrading i)
    Equations
    instance HomogeneousSubmonoid.PreLocalizationGrading.instSubNegMonoid {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] (i : ι) :
    SubNegMonoid (S.PreLocalizationGrading i)
    Equations
    def HomogeneousSubmonoid.PreLocalizationGrading.val {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] (i : ι) :
    S.PreLocalizationGrading i →+ Localization S.toSubmonoid
    Equations
    Instances For
      @[simp]
      theorem HomogeneousSubmonoid.PreLocalizationGrading.val_apply {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] (i : ι) (x : S.PreLocalizationGrading i) :
      def HomogeneousSubmonoid.PreLocalizationGrading.addCon {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] (i : ι) :
      AddCon (S.PreLocalizationGrading i)
      Equations
      Instances For
        instance HomogeneousSubmonoid.PreLocalizationGrading.instNegQuotientAddCon {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] (i : ι) :
        Equations
        • One or more equations did not get rendered due to their size.
        def HomogeneousSubmonoid.LocalizationGrading {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] (i : ι) :
        AddSubgroup (Localization S.toSubmonoid)
        Equations
        Instances For
          theorem HomogeneousSubmonoid.LocalizationGrading.one_mem {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] :
          1 S.LocalizationGrading 0
          instance HomogeneousSubmonoid.LocalizationGrading.instGradedMonoidLocalizationAddSubgroup {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] :
          SetLike.GradedMonoid S.LocalizationGrading
          noncomputable def HomogeneousSubmonoid.LocalizationGrading.decomposition {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] :
          Localization S.toSubmonoid →+* DirectSum ι fun (i : ι) => (S.LocalizationGrading i)
          Equations
          Instances For
            theorem HomogeneousSubmonoid.LocalizationGrading.decomposition_homogeneous_mk {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] {i j : ι} (a : A) (ha : a 𝒜 i) (b : S.toSubmonoid) (hb : b 𝒜 j) :
            (HomogeneousSubmonoid.LocalizationGrading.decomposition S) (Localization.mk a b) = (DirectSum.of (fun (i : ι) => (S.LocalizationGrading i)) (i - j)) Localization.mk a b,
            theorem HomogeneousSubmonoid.mem_localizationGrading_iff {ι : Type u_1} {A : Type u_2} {σ : Type u_3} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass σ A] [DecidableEq ι] [GradedRing 𝒜] (x : Localization S.toSubmonoid) (i : ι) :
            x S.LocalizationGrading i ∃ (m : ι) (n : ι) (_ : m - n = i) (a : (𝒜 m)) (b : (𝒜 n)) (hb : b S.toSubmonoid), x = Localization.mk a b, hb