Documentation

Project.HomogeneousSubmonoid.Basic

structure HomogeneousSubmonoid {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [CommRing A] [SetLike σ A] (𝒜 : ισ) extends Submonoid A :
Type u_2
Instances For
    theorem HomogeneousSubmonoid.ext {ι : Type u_1} {A : Type u_2} {σ : Type u_4} {inst✝ : CommRing A} {inst✝¹ : SetLike σ A} {𝒜 : ισ} {x y : HomogeneousSubmonoid 𝒜} (carrier : x.carrier = y.carrier) :
    x = y
    instance HomogeneousSubmonoid.instSetLike {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [CommRing A] [SetLike σ A] {𝒜 : ισ} :
    Equations
    theorem HomogeneousSubmonoid.mem_iff {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) (x : A) :
    x S x S.toSubmonoid
    @[simp]
    theorem HomogeneousSubmonoid.mem_toSubmonoid_iff {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [CommRing A] [SetLike σ A] {𝒜 : ισ} (S : HomogeneousSubmonoid 𝒜) (x : A) :
    x S.toSubmonoid x S
    instance HomogeneousSubmonoid.instSubmonoidClass {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [CommRing A] [SetLike σ A] {𝒜 : ισ} :
    theorem HomogeneousSubmonoid.homogeneous {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) {x : A} :
    x SSetLike.Homogeneous 𝒜 x
    def HomogeneousSubmonoid.map {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {σ' : Type u_5} [CommRing A] [SetLike σ A] {𝒜 : ισ} [CommRing B] [SetLike σ' B] {ℬ : ισ'} (Φ : GradedRingHom 𝒜 ) (S : HomogeneousSubmonoid 𝒜) :
    Equations
    Instances For
      theorem HomogeneousSubmonoid.map_toSubmonoid {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {σ' : Type u_5} [CommRing A] [SetLike σ A] {𝒜 : ισ} [CommRing B] [SetLike σ' B] {ℬ : ισ'} (Φ : GradedRingHom 𝒜 ) (S : HomogeneousSubmonoid 𝒜) :
      (HomogeneousSubmonoid.map Φ S).toSubmonoid = Submonoid.map Φ S.toSubmonoid
      theorem HomogeneousSubmonoid.mem_map_of_mem {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {σ' : Type u_5} [CommRing A] [SetLike σ A] {𝒜 : ισ} [CommRing B] [SetLike σ' B] {ℬ : ισ'} (Φ : GradedRingHom 𝒜 ) {S : HomogeneousSubmonoid 𝒜} {x : A} :
      x SΦ x HomogeneousSubmonoid.map Φ S
      def HomogeneousSubmonoid.closure {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (s : Set A) (hs : xs, SetLike.Homogeneous 𝒜 x) :
      Equations
      Instances For
        theorem HomogeneousSubmonoid.mem_closure_singleton {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (a : A) (ha : SetLike.Homogeneous 𝒜 a) (x : A) :
        x HomogeneousSubmonoid.closure {a} ∃ (n : ), x = a ^ n
        def HomogeneousSubmonoid.bot {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] :
        Equations
        Instances For
          @[simp]
          theorem HomogeneousSubmonoid.bot_carrier {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] :
          @[simp]
          theorem HomogeneousSubmonoid.mem_bot {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (x : A) :
          instance HomogeneousSubmonoid.instOne {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] :
          Equations
          @[simp]
          theorem HomogeneousSubmonoid.mem_one {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (x : A) :
          x 1 x = 1
          instance HomogeneousSubmonoid.instMul {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] :
          Equations
          @[simp]
          theorem HomogeneousSubmonoid.mul_toSubmonoid {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S T : HomogeneousSubmonoid 𝒜) :
          (S * T).toSubmonoid = S.toSubmonoid * T.toSubmonoid
          theorem HomogeneousSubmonoid.mem_mul_iff {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] {S T : HomogeneousSubmonoid 𝒜} (x : A) :
          x S * T sS, tT, x = s * t
          @[simp]
          theorem HomogeneousSubmonoid.mul_self {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
          S * S = S
          theorem HomogeneousSubmonoid.map_mul {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {σ' : Type u_5} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [CommRing B] [SetLike σ' B] {ℬ : ισ'} [AddSubgroupClass σ' B] [GradedRing ] (Φ : GradedRingHom 𝒜 ) (S T : HomogeneousSubmonoid 𝒜) :
          def HomogeneousSubmonoid.bar {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
          Equations
          • S.bar = { carrier := {x : A | SetLike.Homogeneous 𝒜 x yS, x y}, mul_mem' := , one_mem' := , homogeneous_gen := }
          Instances For
            @[simp]
            theorem HomogeneousSubmonoid.mem_bar {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) (x : A) :
            x S.bar SetLike.Homogeneous 𝒜 x yS, x y
            instance HomogeneousSubmonoid.instPartialOrder {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [CommRing A] [SetLike σ A] {𝒜 : ισ} :
            Equations
            theorem HomogeneousSubmonoid.bar_mono {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S T : HomogeneousSubmonoid 𝒜) :
            S TS.bar T.bar
            theorem HomogeneousSubmonoid.le_iff {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [CommRing A] [SetLike σ A] {𝒜 : ισ} (S T : HomogeneousSubmonoid 𝒜) :
            S T S.toSubmonoid T.toSubmonoid
            theorem HomogeneousSubmonoid.left_le_mul {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S T : HomogeneousSubmonoid 𝒜) :
            S S * T
            theorem HomogeneousSubmonoid.right_le_mul {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S T : HomogeneousSubmonoid 𝒜) :
            T S * T
            theorem HomogeneousSubmonoid.le_bar {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
            S S.bar
            theorem HomogeneousSubmonoid.mem_bot_bar {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (x : A) :
            x HomogeneousSubmonoid.bot.bar SetLike.Homogeneous 𝒜 x ∃ (y : A), x * y = 1
            def HomogeneousSubmonoid.deg {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
            Equations
            • S.deg = { carrier := {i : ι | xS, x 𝒜 i}, add_mem' := , zero_mem' := }
            Instances For
              @[simp]
              theorem HomogeneousSubmonoid.coe_deg {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
              S.deg = {i : ι | xS, x 𝒜 i}
              @[simp]
              theorem HomogeneousSubmonoid.mem_deg_iff {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) (i : ι) :
              i S.deg xS, x 𝒜 i
              theorem HomogeneousSubmonoid.deg_mono {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S T : HomogeneousSubmonoid 𝒜) :
              S TS.deg T.deg
              @[simp]
              theorem HomogeneousSubmonoid.closure_one {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] :
              theorem HomogeneousSubmonoid.mem_deg_singleton {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (a : A) (ha : SetLike.Homogeneous 𝒜 a) (x : ι) :
              x (HomogeneousSubmonoid.closure {a} ).deg ∃ (n : ), a ^ n 𝒜 x
              theorem HomogeneousSubmonoid.mem_deg {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) {i : ι} :
              i S.deg xS, x 𝒜 i
              theorem HomogeneousSubmonoid.zero_mem_deg {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) [Nontrivial A] :
              0 S.deg
              def HomogeneousSubmonoid.monDeg {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
              Equations
              Instances For
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For
                  def HomogeneousSubmonoid.agrDeg {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
                  Equations
                  Instances For
                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      noncomputable def HomogeneousSubmonoid.agrDegEquiv {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
                      AddGR S.monDeg ≃+ S.agrDeg
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        noncomputable def HomogeneousSubmonoid.convMonDegEmbedding {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem HomogeneousSubmonoid.convMonDegEmbedding_apply_tmul {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) (r : NNReal) (i : S.monDeg) :
                          S.convMonDegEmbedding (r ⊗ₜ[] i) = r ⊗ₜ[] i
                          noncomputable def HomogeneousSubmonoid.convMonDeg {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
                          Equations
                          Instances For
                            noncomputable def HomogeneousSubmonoid.convMonDeg' {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
                            Equations
                            Instances For
                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For
                                theorem HomogeneousSubmonoid.mem_convMonDeg {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) [Nontrivial A] (x : TensorProduct ι) :
                                x S.convMonDeg ∃ (s : ι →₀ NNReal), (∀ is.support, i S.deg) x = is.support, (s i) ⊗ₜ[] i
                                def HomogeneousSubmonoid.IsRelevant {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
                                Equations
                                • S.IsRelevant = ∀ (i : ι), ∃ (n : ), 0 < n n i S.bar.agrDeg
                                Instances For
                                  theorem HomogeneousSubmonoid.IsRelevant.mul {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] {S T : HomogeneousSubmonoid 𝒜} (S_rel : S.IsRelevant) (T_rel : T.IsRelevant) :
                                  (S * T).IsRelevant
                                  theorem HomogeneousSubmonoid.IsRelevant.map {ι : Type u_1} {A : Type u_2} {B : Type u_3} {σ : Type u_4} {σ' : Type u_5} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [CommRing B] [SetLike σ' B] {ℬ : ισ'} [AddSubgroupClass σ' B] [GradedRing ] {S : HomogeneousSubmonoid 𝒜} (S_rel : S.IsRelevant) (Φ : GradedRingHom 𝒜 ) :
                                  (HomogeneousSubmonoid.map Φ S).IsRelevant
                                  theorem HomogeneousSubmonoid.isRelevant_iff_isTorsion_quotient {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) :
                                  S.IsRelevant AddMonoid.IsTorsion (ι S.bar.agrDeg)
                                  theorem HomogeneousSubmonoid.isRelevant_iff_finite_quotient_of_FG {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) [AddGroup.FG ι] :
                                  S.IsRelevant Finite (ι S.bar.agrDeg)
                                  theorem HomogeneousSubmonoid.isRelevant_iff_finiteIndex_of_FG {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (S : HomogeneousSubmonoid 𝒜) [AddGroup.FG ι] :
                                  S.IsRelevant S.bar.agrDeg.FiniteIndex
                                  @[reducible, inline]
                                  abbrev HomogeneousSubmonoid.SetIsRelevant {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (s : Set A) (hs : is, SetLike.Homogeneous 𝒜 i) :
                                  Equations
                                  Instances For
                                    @[reducible, inline]
                                    abbrev HomogeneousSubmonoid.ElemIsRelevant {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (a : A) (ha : SetLike.Homogeneous 𝒜 a) :
                                    Equations
                                    Instances For
                                      theorem AddSubgroup.closure_add_image_add_eq_top {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {R S : Set G} (hR : AddSubgroup.IsComplement (↑H) R) (hR1 : 0 R) (hS : AddSubgroup.closure S = ) :
                                      (AddSubgroup.closure ((fun (g : G) => g + -(hR.toRightFun g)) '' (R + S))) + R =
                                      theorem AddSubgroup.closure_add_image_eq {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {R S : Set G} (hR : AddSubgroup.IsComplement (↑H) R) (hR1 : 0 R) (hS : AddSubgroup.closure S = ) :
                                      AddSubgroup.closure ((fun (g : G) => g + -(hR.toRightFun g)) '' (R + S)) = H
                                      theorem AddSubgroup.closure_add_image_eq_top {G : Type u_1} [AddGroup G] {H : AddSubgroup G} {R S : Set G} (hR : AddSubgroup.IsComplement (↑H) R) (hR1 : 0 R) (hS : AddSubgroup.closure S = ) :
                                      AddSubgroup.closure ((fun (g : G) => g + -(hR.toRightFun g), ) '' (R + S)) =
                                      theorem AddSubgroup.closure_add_image_eq_top' {G : Type u_1} [AddGroup G] {H : AddSubgroup G} [DecidableEq G] {R S : Finset G} (hR : AddSubgroup.IsComplement H R) (hR1 : 0 R) (hS : AddSubgroup.closure S = ) :
                                      AddSubgroup.closure (Finset.image (fun (g : G) => g + -(hR.toRightFun g), ) (R + S)) =
                                      theorem AddSubgroup.exists_finset_card_le_add {G : Type u_1} [AddGroup G] (H : AddSubgroup G) [H.FiniteIndex] {S : Finset G} (hS : AddSubgroup.closure S = ) :
                                      ∃ (T : Finset H), T.card H.index * S.card AddSubgroup.closure T =
                                      instance AddSubgroup.fg_of_index_ne_zero {G : Type u_1} [AddGroup G] (H : AddSubgroup G) [hG : AddGroup.FG G] [H.FiniteIndex] :
                                      theorem HomogeneousSubmonoid.exists_factorisation_of_elemIsRelevant {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [AddGroup.FG ι] (a : A) (ha : SetLike.Homogeneous 𝒜 a) (a_rel : HomogeneousSubmonoid.ElemIsRelevant a ha) :
                                      ∃ (n : ) (x : Fin nA) (d : Fin nι) (_ : ∀ (i : Fin n), x i 𝒜 (d i)), (AddSubgroup.closure (Set.range d)).FiniteIndex ∃ (k : ), i : Fin n, x i = a ^ k
                                      theorem HomogeneousSubmonoid.elemIsRelevant_of_homogeneous_of_factorisation {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [AddGroup.FG ι] (a : A) (ha : SetLike.Homogeneous 𝒜 a) (n : ) (x : Fin nA) (d : Fin nι) (mem : ∀ (i : Fin n), x i 𝒜 (d i)) (finiteIndex : (AddSubgroup.closure (Set.range d)).FiniteIndex) (k : ) (eq : i : Fin n, x i = a ^ k) :
                                      theorem HomogeneousSubmonoid.elemIsRelevant_iff {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] {𝒜 : ισ} [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [AddGroup.FG ι] (a : A) (ha : SetLike.Homogeneous 𝒜 a) :
                                      HomogeneousSubmonoid.ElemIsRelevant a ha ∃ (n : ) (x : Fin nA) (d : Fin nι) (_ : ∀ (i : Fin n), x i 𝒜 (d i)), (AddSubgroup.closure (Set.range d)).FiniteIndex ∃ (k : ), i : Fin n, x i = a ^ k
                                      def HomogeneousSubmonoid.dagger {ι : Type u_1} {A : Type u_2} {σ : Type u_4} [AddCommGroup ι] [CommRing A] [SetLike σ A] (𝒜 : ισ) [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] :
                                      Equations
                                      Instances For