Documentation

Project.Grading.TensorProduct

noncomputable def TensorProduct.gradingByProduct {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] (𝒜 : ιASubmodule R A) (ℬ : ιBSubmodule R B) :
ιA × ιBSubmodule R (TensorProduct R A B)
Equations
Instances For
    instance TensorProduct.instGradedMonoidProdSubmoduleGradingByProduct {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [DecidableEq ιA] [AddCommGroup ιA] [DecidableEq ιB] [AddCommGroup ιB] [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] (𝒜 : ιASubmodule R A) (ℬ : ιBSubmodule R B) [GradedAlgebra 𝒜] [GradedAlgebra ] :
    noncomputable def TensorProduct.decompositionByProduct {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [DecidableEq ιA] [AddCommGroup ιA] [DecidableEq ιB] [AddCommGroup ιB] [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] (𝒜 : ιASubmodule R A) (ℬ : ιBSubmodule R B) [GradedAlgebra 𝒜] [GradedAlgebra ] :
    TensorProduct R A B →ₗ[R] DirectSum (ιA × ιB) fun (p : ιA × ιB) => (TensorProduct.gradingByProduct 𝒜 p)
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem TensorProduct.decompositionByProduct_apply_tmul_homogeneous {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [DecidableEq ιA] [AddCommGroup ιA] [DecidableEq ιB] [AddCommGroup ιB] [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] (𝒜 : ιASubmodule R A) (ℬ : ιBSubmodule R B) [GradedAlgebra 𝒜] [GradedAlgebra ] (a : A) (b : B) (i : ιA) (j : ιB) (ha : a 𝒜 i) (hb : b j) :
      (TensorProduct.decompositionByProduct 𝒜 ) (a ⊗ₜ[R] b) = (DirectSum.lof R (ιA × ιB) (fun (p : ιA × ιB) => (TensorProduct.gradingByProduct 𝒜 p)) (i, j)) (TensorProduct.map (𝒜 (i, j).1).subtype ( (i, j).2).subtype) (a, ha ⊗ₜ[R] b, hb),
      noncomputable instance TensorProduct.instDecompositionProdSubmoduleGradingByProduct {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [DecidableEq ιA] [AddCommGroup ιA] [DecidableEq ιB] [AddCommGroup ιB] [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] (𝒜 : ιASubmodule R A) (ℬ : ιBSubmodule R B) [GradedAlgebra 𝒜] [GradedAlgebra ] :
      Equations
      noncomputable instance TensorProduct.instGradedAlgebraProdGradingByProduct {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [DecidableEq ιA] [AddCommGroup ιA] [DecidableEq ιB] [AddCommGroup ιB] [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] (𝒜 : ιASubmodule R A) (ℬ : ιBSubmodule R B) [GradedAlgebra 𝒜] [GradedAlgebra ] :
      Equations
      theorem TensorProduct.tmul_homogeneous {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] {𝒜 : ιASubmodule R A} {ℬ : ιBSubmodule R B} {a : A} {b : B} (ha : SetLike.Homogeneous 𝒜 a) (hb : SetLike.Homogeneous b) :
      theorem TensorProduct.mem_degree_iff {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] {𝒜 : ιASubmodule R A} {ℬ : ιBSubmodule R B} {iA : ιA} {iB : ιB} (x : TensorProduct R A B) :
      x TensorProduct.gradingByProduct 𝒜 (iA, iB) ∃ (c : TensorProduct R (𝒜 iA) ( iB) →₀ (𝒜 iA) × ( iB)), x = ic.support, (c i).1 ⊗ₜ[R] (c i).2
      theorem TensorProduct.tmul_elemIsRelevant {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [DecidableEq ιA] [AddCommGroup ιA] [DecidableEq ιB] [AddCommGroup ιB] [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] {𝒜 : ιASubmodule R A} {ℬ : ιBSubmodule R B} [GradedAlgebra 𝒜] [GradedAlgebra ] {x : A} {y : B} {hom_x : SetLike.Homogeneous 𝒜 x} {hom_y : SetLike.Homogeneous y} (rel_x : HomogeneousSubmonoid.ElemIsRelevant x hom_x) (rel_y : HomogeneousSubmonoid.ElemIsRelevant y hom_y) :
      theorem TensorProduct.elemIsRelevant_of_exists {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [DecidableEq ιA] [AddCommGroup ιA] [DecidableEq ιB] [AddCommGroup ιB] [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] {𝒜 : ιASubmodule R A} {ℬ : ιBSubmodule R B} [GradedAlgebra 𝒜] [GradedAlgebra ] [AddGroup.FG ιA] [AddGroup.FG ιB] (x : TensorProduct R A B) (hom_x : SetLike.Homogeneous (TensorProduct.gradingByProduct 𝒜 ) x) (rel_x : HomogeneousSubmonoid.ElemIsRelevant x hom_x) :
      ∃ (n : ) (sA : Fin nA) (sB : Fin nB) (hom_sA : ∀ (i : Fin n), SetLike.Homogeneous 𝒜 (sA i)) (hom_sB : ∀ (i : Fin n), SetLike.Homogeneous (sB i)) (_ : ∀ (i : Fin n), HomogeneousSubmonoid.ElemIsRelevant (sA i) ) (_ : ∀ (i : Fin n), HomogeneousSubmonoid.ElemIsRelevant (sB i) ) (k : ), x ^ k = i : Fin n, sA i ⊗ₜ[R] sB i
      noncomputable def TensorProduct.dagger {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [DecidableEq ιA] [AddCommGroup ιA] [DecidableEq ιB] [AddCommGroup ιB] [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] (𝒜 : ιASubmodule R A) (ℬ : ιBSubmodule R B) [GradedAlgebra 𝒜] [GradedAlgebra ] :
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        theorem TensorProduct.rad_dagger {ιA : Type u_1} {ιB : Type u_2} {R : Type u_3} {A : Type u_4} {B : Type u_5} [DecidableEq ιA] [AddCommGroup ιA] [DecidableEq ιB] [AddCommGroup ιB] [CommRing R] [CommRing A] [Algebra R A] [CommRing B] [Algebra R B] {𝒜 : ιASubmodule R A} {ℬ : ιBSubmodule R B} [GradedAlgebra 𝒜] [GradedAlgebra ] [AddGroup.FG ιA] [AddGroup.FG ιB] :