Documentation

Project.Grading.LocalizedModule

structure HomogeneousSubmonoid.PreLocalizedModuleGrading {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) (i : ι) :
Type (max (max u_1 u_2) u_3)
  • num : Q
  • den : S.toSubmonoid
  • degNum : ι
  • degDen : ι
  • num_mem : self.num 𝒬 self.degNum
  • den_mem : self.den 𝒜 self.degDen
  • deg_frac_eq : self.degNum - self.degDen = i
Instances For
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.ext {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) {i : ι} (x y : HomogeneousSubmonoid.PreLocalizedModuleGrading 𝒬 S i) (num_eq : x.num = y.num) (den_eq : x.den = y.den) (degNum_eq : x.degNum = y.degNum) (degDen_eq : x.degDen = y.degDen) :
    x = y
    instance HomogeneousSubmonoid.PreLocalizedModuleGrading.instNeg {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] (i : ι) :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.neg_num {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] {i : ι} (x : HomogeneousSubmonoid.PreLocalizedModuleGrading 𝒬 S i) :
    (-x).num = -x.num
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.neg_den {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] {i : ι} (x : HomogeneousSubmonoid.PreLocalizedModuleGrading 𝒬 S i) :
    (-x).den = x.den
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.neg_degNum {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] {i : ι} (x : HomogeneousSubmonoid.PreLocalizedModuleGrading 𝒬 S i) :
    (-x).degNum = x.degNum
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.neg_degDen {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] {i : ι} (x : HomogeneousSubmonoid.PreLocalizedModuleGrading 𝒬 S i) :
    (-x).degDen = x.degDen
    instance HomogeneousSubmonoid.PreLocalizedModuleGrading.instAdd {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (i : ι) :
    Equations
    • One or more equations did not get rendered due to their size.
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.add_num {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] {i : ι} (x y : HomogeneousSubmonoid.PreLocalizedModuleGrading 𝒬 S i) :
    (x + y).num = x.den y.num + y.den x.num
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.add_den {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] {i : ι} (x y : HomogeneousSubmonoid.PreLocalizedModuleGrading 𝒬 S i) :
    (x + y).den = x.den * y.den
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.add_degNum {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] {i : ι} (x y : HomogeneousSubmonoid.PreLocalizedModuleGrading 𝒬 S i) :
    (x + y).degNum = x.degDen + y.degNum
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.add_degDen {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] {i : ι} (x y : HomogeneousSubmonoid.PreLocalizedModuleGrading 𝒬 S i) :
    (x + y).degDen = x.degDen + y.degDen
    instance HomogeneousSubmonoid.PreLocalizedModuleGrading.instZero {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] (i : ι) :
    Equations
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.zero_num {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] {i : ι} :
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.zero_den {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] {i : ι} :
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.zero_degNum {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] {i : ι} :
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.zero_degDen {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] {i : ι} :
    @[simp]
    theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.neg_zero {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] {i : ι} :
    -0 = 0
    instance HomogeneousSubmonoid.PreLocalizedModuleGrading.instAddZeroClass {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (i : ι) :
    Equations
    instance HomogeneousSubmonoid.PreLocalizedModuleGrading.instAddSemigroup {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (i : ι) :
    Equations
    instance HomogeneousSubmonoid.PreLocalizedModuleGrading.instSubNegMonoid {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (i : ι) :
    Equations
    def HomogeneousSubmonoid.PreLocalizedModuleGrading.val {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (i : ι) :
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.val_apply {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (i : ι) (x : HomogeneousSubmonoid.PreLocalizedModuleGrading 𝒬 S i) :
      def HomogeneousSubmonoid.PreLocalizedModuleGrading.addCon {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (i : ι) :
      Equations
      Instances For
        instance HomogeneousSubmonoid.PreLocalizedModuleGrading.instNegQuotientAddCon {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (i : ι) :
        Equations
        • One or more equations did not get rendered due to their size.
        def HomogeneousSubmonoid.PreLocalizedModuleGrading.emb {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (i : ι) :
        Equations
        Instances For
          @[simp]
          theorem HomogeneousSubmonoid.PreLocalizedModuleGrading.emb_apply {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [AddSubgroupClass τ Q] [Module A Q] [DecidableEq ι] [AddSubgroupClass σ A] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (i : ι) (x : (HomogeneousSubmonoid.PreLocalizedModuleGrading.addCon 𝒬 S i).Quotient) :
          def HomogeneousSubmonoid.LocalizedModuleGrading {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [Module A Q] [AddSubgroupClass σ A] [AddSubgroupClass τ Q] [DecidableEq ι] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (i : ι) :
          AddSubgroup (LocalizedModule S.toSubmonoid Q)
          Equations
          Instances For
            instance HomogeneousSubmonoid.LocalizedModuleGrading.instGradedSMulAddSubgroupLocalizationLocalizedModuleLocalizationGrading {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [Module A Q] [AddSubgroupClass σ A] [AddSubgroupClass τ Q] [DecidableEq ι] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] :
            noncomputable instance HomogeneousSubmonoid.LocalizedModuleGrading.instModuleLocalizationDirectSumSubtypeLocalizedModuleMemAddSubgroup {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [Module A Q] [AddSubgroupClass σ A] [AddSubgroupClass τ Q] [DecidableEq ι] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] :
            Module (Localization S.toSubmonoid) (DirectSum ι fun (i : ι) => (HomogeneousSubmonoid.LocalizedModuleGrading 𝒬 S i))
            Equations
            • One or more equations did not get rendered due to their size.
            @[simp]
            theorem HomogeneousSubmonoid.LocalizedModuleGrading.localization_smul_directSum_def {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [Module A Q] [AddSubgroupClass σ A] [AddSubgroupClass τ Q] [DecidableEq ι] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (x : Localization S.toSubmonoid) (y : DirectSum ι fun (i : ι) => (HomogeneousSubmonoid.LocalizedModuleGrading 𝒬 S i)) :
            x y = (DirectSum.decompose S.LocalizationGrading) x y
            noncomputable instance HomogeneousSubmonoid.LocalizedModuleGrading.instModuleDirectSumSubtypeLocalizedModuleMemAddSubgroup {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [Module A Q] [AddSubgroupClass σ A] [AddSubgroupClass τ Q] [DecidableEq ι] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] :
            Module A (DirectSum ι fun (i : ι) => (HomogeneousSubmonoid.LocalizedModuleGrading 𝒬 S i))
            Equations
            • One or more equations did not get rendered due to their size.
            @[simp]
            theorem HomogeneousSubmonoid.LocalizedModuleGrading.smul_directSum_def {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [Module A Q] [AddSubgroupClass σ A] [AddSubgroupClass τ Q] [DecidableEq ι] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] (a : A) (x : DirectSum ι fun (i : ι) => (HomogeneousSubmonoid.LocalizedModuleGrading 𝒬 S i)) :
            a x = (algebraMap A (Localization S.toSubmonoid)) a x
            instance HomogeneousSubmonoid.LocalizedModuleGrading.instIsScalarTowerLocalizationDirectSumSubtypeLocalizedModuleMemAddSubgroup {ι : Type u_1} {A : Type u_2} {Q : Type u_3} {σ : Type u_4} {τ : Type u_5} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [SetLike σ A] [SetLike τ Q] {𝒜 : ισ} (𝒬 : ιτ) (S : HomogeneousSubmonoid 𝒜) [Module A Q] [AddSubgroupClass σ A] [AddSubgroupClass τ Q] [DecidableEq ι] [GradedRing 𝒜] [SetLike.GradedSMul 𝒜 𝒬] :
            IsScalarTower A (Localization S.toSubmonoid) (DirectSum ι fun (i : ι) => (HomogeneousSubmonoid.LocalizedModuleGrading 𝒬 S i))
            noncomputable def HomogeneousSubmonoid.LocalizedModuleGrading.decompositionAux1 {ι : Type u_1} {A : Type u_2} {Q : Type u_3} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [Module A Q] [DecidableEq ι] {𝓐 : ιAddSubgroup A} [GradedRing 𝓐] (𝓠 : ιAddSubgroup Q) [SetLike.GradedSMul 𝓐 𝓠] (S : HomogeneousSubmonoid 𝓐) :
            (DirectSum ι fun (i : ι) => (𝓠 i)) →+ DirectSum ι fun (i : ι) => (HomogeneousSubmonoid.LocalizedModuleGrading 𝓠 S i)
            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              noncomputable def HomogeneousSubmonoid.LocalizedModuleGrading.decompositionAux3 {ι : Type u_1} {A : Type u_2} {Q : Type u_3} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [Module A Q] [DecidableEq ι] {𝓐 : ιAddSubgroup A} [GradedRing 𝓐] (𝓠 : ιAddSubgroup Q) [DirectSum.Decomposition 𝓠] [SetLike.GradedSMul 𝓐 𝓠] (S : HomogeneousSubmonoid 𝓐) :
              Equations
              Instances For
                theorem HomogeneousSubmonoid.LocalizedModuleGrading.decompositionAux3_apply_mem_mem {ι : Type u_1} {A : Type u_2} {Q : Type u_3} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [Module A Q] [DecidableEq ι] {𝓐 : ιAddSubgroup A} [GradedRing 𝓐] (𝓠 : ιAddSubgroup Q) [DirectSum.Decomposition 𝓠] [SetLike.GradedSMul 𝓐 𝓠] (S : HomogeneousSubmonoid 𝓐) {i j : ι} (a : A) (ha : a 𝓐 i) (q : Q) (hq : q 𝓠 j) :
                theorem HomogeneousSubmonoid.LocalizedModuleGrading.inv_of {ι : Type u_1} {A : Type u_2} {Q : Type u_3} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [Module A Q] [DecidableEq ι] {𝓐 : ιAddSubgroup A} [GradedRing 𝓐] (𝓠 : ιAddSubgroup Q) [SetLike.GradedSMul 𝓐 𝓠] (S : HomogeneousSubmonoid 𝓐) (x y : A) (hx1 : x S.toSubmonoid) (i j k jsk jki : ι) (hx2 : x 𝓐 i) (q : Q) (hq : q 𝓠 j) (hy1 : y 𝓐 k) (hy2 : y S.toSubmonoid) (hjsk : jsk = j - k) (hjki : jki = j - (k + i)) :
                (HomogeneousSubmonoid.LocalizedModuleGrading.inv✝ 𝓠 S x hx1 i hx2) ((DirectSum.of (fun (i : ι) => (HomogeneousSubmonoid.LocalizedModuleGrading 𝓠 S i)) jsk) LocalizedModule.mk q y, hy2, ) = (DirectSum.of (fun (i : ι) => (HomogeneousSubmonoid.LocalizedModuleGrading 𝓠 S i)) jki) LocalizedModule.mk q x * y, ,
                theorem HomogeneousSubmonoid.LocalizedModuleGrading.decomposition_homogeneous_mk {ι : Type u_1} {A : Type u_2} {Q : Type u_3} [AddCommGroup ι] [CommRing A] [AddCommGroup Q] [Module A Q] [DecidableEq ι] {𝓐 : ιAddSubgroup A} [GradedRing 𝓐] (𝓠 : ιAddSubgroup Q) [DirectSum.Decomposition 𝓠] [SetLike.GradedSMul 𝓐 𝓠] (S : HomogeneousSubmonoid 𝓐) {i j : ι} (a : Q) (ha : a 𝓠 i) (b : S.toSubmonoid) (hb : b 𝓐 j) :
                Equations
                • One or more equations did not get rendered due to their size.