@[reducible, inline]
noncomputable abbrev
HomogeneousSubmonoid.Potion
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
(S : HomogeneousSubmonoid 𝒜)
:
Type (max u_1 u_3)
Equations
- S.Potion = HomogeneousLocalization 𝒜 S.toSubmonoid
Instances For
noncomputable def
HomogeneousSubmonoid.potionToMap
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
[CommRing B]
[Algebra R B]
{ℬ : ι → Submodule R B}
[GradedAlgebra ℬ]
(S : HomogeneousSubmonoid 𝒜)
(Φ : GradedRingHom 𝒜 ℬ)
:
S.Potion →+* (HomogeneousSubmonoid.map Φ S).Potion
Equations
- S.potionToMap Φ = HomogeneousLocalization.map 𝒜 ℬ ↑Φ ⋯ ⋯
Instances For
@[simp]
theorem
HomogeneousSubmonoid.potionToMap_mk
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
[CommRing B]
[Algebra R B]
{ℬ : ι → Submodule R B}
[GradedAlgebra ℬ]
(S : HomogeneousSubmonoid 𝒜)
(Φ : GradedRingHom 𝒜 ℬ)
(x : HomogeneousLocalization.NumDenSameDeg 𝒜 S.toSubmonoid)
:
(S.potionToMap Φ) (HomogeneousLocalization.mk x) = HomogeneousLocalization.mk { deg := x.deg, num := ⟨Φ ↑x.num, ⋯⟩, den := ⟨Φ ↑x.den, ⋯⟩, den_mem := ⋯ }
noncomputable def
HomogeneousSubmonoid.potionEquiv
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{S T : HomogeneousSubmonoid 𝒜}
(eq : S = T)
:
S.Potion ≃+* T.Potion
Equations
- HomogeneousSubmonoid.potionEquiv eq = RingEquiv.ofHomInv (HomogeneousLocalization.map 𝒜 𝒜 (RingHom.id A) ⋯ ⋯) (HomogeneousLocalization.map 𝒜 𝒜 (RingHom.id A) ⋯ ⋯) ⋯ ⋯
Instances For
@[simp]
theorem
HomogeneousSubmonoid.potionEquiv_mk
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{S T : HomogeneousSubmonoid 𝒜}
(eq : S = T)
(x : HomogeneousLocalization.NumDenSameDeg 𝒜 S.toSubmonoid)
:
(HomogeneousSubmonoid.potionEquiv eq) (HomogeneousLocalization.mk x) = HomogeneousLocalization.mk { deg := x.deg, num := ⟨↑x.num, ⋯⟩, den := ⟨↑x.den, ⋯⟩, den_mem := ⋯ }
@[simp]
theorem
HomogeneousSubmonoid.potionEquiv_mk'
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{S T : HomogeneousSubmonoid 𝒜}
(eq : S = T)
(x : HomogeneousLocalization.NumDenSameDeg 𝒜 S.toSubmonoid)
:
(HomogeneousSubmonoid.potionEquiv eq) (Quotient.mk'' x) = HomogeneousLocalization.mk { deg := x.deg, num := ⟨↑x.num, ⋯⟩, den := ⟨↑x.den, ⋯⟩, den_mem := ⋯ }
@[simp]
theorem
HomogeneousSubmonoid.potionEquiv_refl
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
:
HomogeneousSubmonoid.potionEquiv ⋯ = RingEquiv.refl S.Potion
@[simp]
theorem
HomogeneousSubmonoid.potionEquiv_refl_apply
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
(x : S.Potion)
:
(HomogeneousSubmonoid.potionEquiv ⋯) x = x
@[simp]
theorem
HomogeneousSubmonoid.potionEquiv_symm
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{R✝ S : HomogeneousSubmonoid 𝒜}
(eq : R✝ = S)
:
@[simp]
theorem
HomogeneousSubmonoid.potionEquiv_symm_apply
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{R✝ S : HomogeneousSubmonoid 𝒜}
(eq : R✝ = S)
(x : S.Potion)
:
(HomogeneousSubmonoid.potionEquiv eq).symm x = (HomogeneousSubmonoid.potionEquiv ⋯) x
@[simp]
theorem
HomogeneousSubmonoid.potionEquiv_trans
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{R✝ S T : HomogeneousSubmonoid 𝒜}
(eq1 : R✝ = S)
(eq2 : S = T)
:
@[simp]
theorem
HomogeneousSubmonoid.potionEquiv_comp
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{R✝ S T : HomogeneousSubmonoid 𝒜}
(eq1 : R✝ = S)
(eq2 : S = T)
:
(HomogeneousSubmonoid.potionEquiv eq2).toRingHom.comp (HomogeneousSubmonoid.potionEquiv eq1).toRingHom = (HomogeneousSubmonoid.potionEquiv ⋯).toRingHom
@[simp]
theorem
HomogeneousSubmonoid.potionEquiv_trans_apply
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{R✝ S T : HomogeneousSubmonoid 𝒜}
(eq1 : R✝ = S)
(eq2 : S = T)
(x : R✝.Potion)
:
(HomogeneousSubmonoid.potionEquiv eq2) ((HomogeneousSubmonoid.potionEquiv eq1) x) = (HomogeneousSubmonoid.potionEquiv ⋯) x
theorem
HomogeneousSubmonoid.potionToMap_comp_potionEquiv
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
[CommRing B]
[Algebra R B]
{ℬ : ι → Submodule R B}
[GradedAlgebra ℬ]
(S T : HomogeneousSubmonoid 𝒜)
(Φ : GradedRingHom 𝒜 ℬ)
(eq : S = T)
:
(S.potionToMap Φ).comp (HomogeneousSubmonoid.potionEquiv ⋯).toRingHom = (HomogeneousSubmonoid.potionEquiv ⋯).toRingHom.comp (T.potionToMap Φ)
noncomputable def
HomogeneousSubmonoid.potionToMul
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S T : HomogeneousSubmonoid 𝒜)
:
Equations
- S.potionToMul T = HomogeneousLocalization.map 𝒜 𝒜 (RingHom.id A) ⋯ ⋯
Instances For
noncomputable def
HomogeneousSubmonoid.potionToMulSelf
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
:
Equations
- S.potionToMulSelf = HomogeneousSubmonoid.potionEquiv ⋯
Instances For
@[simp]
theorem
HomogeneousSubmonoid.potionToMul_mk
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S T : HomogeneousSubmonoid 𝒜)
(x : HomogeneousLocalization.NumDenSameDeg 𝒜 S.toSubmonoid)
:
(S.potionToMul T) (HomogeneousLocalization.mk x) = HomogeneousLocalization.mk { deg := x.deg, num := x.num, den := x.den, den_mem := ⋯ }
@[simp]
theorem
HomogeneousSubmonoid.potionToMul_mk'
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S T : HomogeneousSubmonoid 𝒜)
(x : HomogeneousLocalization.NumDenSameDeg 𝒜 S.toSubmonoid)
:
(S.potionToMul T) (Quotient.mk'' x) = HomogeneousLocalization.mk { deg := x.deg, num := x.num, den := x.den, den_mem := ⋯ }
theorem
HomogeneousSubmonoid.potionToMul_comp_potionToMap
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
{B : Type u_4}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
[CommRing B]
[Algebra R B]
{ℬ : ι → Submodule R B}
[GradedAlgebra ℬ]
(S T : HomogeneousSubmonoid 𝒜)
(Φ : GradedRingHom 𝒜 ℬ)
:
((HomogeneousSubmonoid.map Φ S).potionToMul (HomogeneousSubmonoid.map Φ T)).comp (S.potionToMap Φ) = ((HomogeneousSubmonoid.potionEquiv ⋯).toRingHom.comp ((S * T).potionToMap Φ)).comp (S.potionToMul T)
@[simp]
theorem
HomogeneousSubmonoid.potionEquiv_potionToMul_assoc
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{R✝ S T : HomogeneousSubmonoid 𝒜}
(x : R✝.Potion)
:
((R✝ * S).potionToMul T) ((R✝.potionToMul S) x) = (HomogeneousSubmonoid.potionEquiv ⋯) ((R✝.potionToMul (S * T)) x)
noncomputable instance
HomogeneousSubmonoid.instAlgebraPotionHMulSubmodule
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S T : HomogeneousSubmonoid 𝒜)
:
Equations
- S.instAlgebraPotionHMulSubmodule T = (S.potionToMul T).toAlgebra
@[simp]
theorem
HomogeneousSubmonoid.mul_potion_algebraMap_eq
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S T : HomogeneousSubmonoid 𝒜)
:
algebraMap S.Potion (S * T).Potion = S.potionToMul T
noncomputable def
HomogeneousSubmonoid.toBarPotion
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
:
S.Potion →+* S.bar.Potion
Equations
- S.toBarPotion = HomogeneousLocalization.map 𝒜 𝒜 (RingHom.id A) ⋯ ⋯
Instances For
@[simp]
theorem
HomogeneousSubmonoid.toBarPotion_mk
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
(x : HomogeneousLocalization.NumDenSameDeg 𝒜 S.toSubmonoid)
:
S.toBarPotion (HomogeneousLocalization.mk x) = HomogeneousLocalization.mk { deg := x.deg, num := x.num, den := x.den, den_mem := ⋯ }
@[simp]
theorem
HomogeneousSubmonoid.toBarPotion_mk'
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
(x : HomogeneousLocalization.NumDenSameDeg 𝒜 S.toSubmonoid)
:
S.toBarPotion (Quotient.mk'' x) = HomogeneousLocalization.mk { deg := x.deg, num := x.num, den := x.den, den_mem := ⋯ }
theorem
HomogeneousSubmonoid.toBarPotion_surjective
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
:
Function.Surjective ⇑S.toBarPotion
theorem
HomogeneousSubmonoid.toBarPotion_injective
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
:
Function.Injective ⇑S.toBarPotion
noncomputable def
HomogeneousSubmonoid.equivBarPotion
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
:
S.Potion ≃+* S.bar.Potion
Equations
- S.equivBarPotion = RingEquiv.ofBijective S.toBarPotion ⋯
Instances For
theorem
HomogeneousSubmonoid.equivBarPotion_apply
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
(x : S.Potion)
:
S.equivBarPotion x = S.toBarPotion x
theorem
HomogeneousSubmonoid.equivBarPotion_symm_apply
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
(i j : ι)
(m n : A)
(m_mem : m ∈ 𝒜 i)
(n_mem : n ∈ 𝒜 i)
(z : A)
(z_mem : z ∈ 𝒜 j)
(hz : n * z ∈ S)
:
S.equivBarPotion.symm (HomogeneousLocalization.mk { deg := i, num := ⟨m, m_mem⟩, den := ⟨n, n_mem⟩, den_mem := ⋯ }) = HomogeneousLocalization.mk { deg := i + j, num := ⟨m * z, ⋯⟩, den := ⟨n * z, ⋯⟩, den_mem := hz }
theorem
HomogeneousSubmonoid.toMul_equivBarPotion_symm
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S T : HomogeneousSubmonoid 𝒜)
(x : HomogeneousLocalization.NumDenSameDeg 𝒜 S.bar.toSubmonoid)
:
(S.potionToMul T) (S.equivBarPotion.symm (HomogeneousLocalization.mk x)) = (S * T).equivBarPotion.symm (HomogeneousLocalization.mk { deg := x.deg, num := x.num, den := x.den, den_mem := ⋯ })
noncomputable instance
HomogeneousSubmonoid.instAlgebraPotionBarSubmodule
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
:
Algebra S.Potion S.bar.Potion
Equations
- S.instAlgebraPotionBarSubmodule = (↑S.equivBarPotion).toAlgebra
@[simp]
theorem
HomogeneousSubmonoid.bar_potion_algebraMap_eq
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S : HomogeneousSubmonoid 𝒜)
:
algebraMap S.Potion S.bar.Potion = ↑S.equivBarPotion
structure
HomogeneousSubmonoid.PotionGen
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
(S T : HomogeneousSubmonoid 𝒜)
:
Type (max (max u_1 u_3) (u_5 + 1))
- index : Type u_5
- elem : self.index → A
- elem_mem (t : self.index) : self.elem t ∈ T
- gen : Submonoid.closure (Set.range self.elem) = T.toSubmonoid
- n : self.index → ℕ+
- s : self.index → A
- s' : self.index → A
- s_mem_bar (t : self.index) : self.s t ∈ S.bar
- s'_mem_bar (t : self.index) : self.s' t ∈ S.bar
- i : self.index → ι
- i' : self.index → ι
- s_deg (t : self.index) : self.s t ∈ 𝒜 (self.i t)
- s'_deg (t : self.index) : self.s' t ∈ 𝒜 (self.i' t)
Instances For
noncomputable def
HomogeneousSubmonoid.PotionGen.genSubmonoid
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{S T : HomogeneousSubmonoid 𝒜}
(T' : S.PotionGen T)
:
Submonoid S.Potion
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
HomogeneousSubmonoid.finite_potionGen_exists_aux₁
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{S : HomogeneousSubmonoid 𝒜}
(S_rel : S.IsRelevant)
(t : A)
(m : ι)
(ht : t ∈ 𝒜 m)
:
theorem
HomogeneousSubmonoid.finite_potionGen_exists_aux₂
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{S : HomogeneousSubmonoid 𝒜}
(S_rel : S.IsRelevant)
(t : A)
(ht : SetLike.Homogeneous 𝒜 t)
:
noncomputable def
HomogeneousSubmonoid.finitePotionGen
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{S T : HomogeneousSubmonoid 𝒜}
(S_rel : S.IsRelevant)
(T_fg : T.FG)
:
S.PotionGen T
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
HomogeneousSubmonoid.finitePotionGen_finite
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{S T : HomogeneousSubmonoid 𝒜}
(S_rel : S.IsRelevant)
(T_fg : T.FG)
:
Finite (HomogeneousSubmonoid.finitePotionGen S_rel T_fg).index
noncomputable def
HomogeneousSubmonoid.PotionGen.disjUnion
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{R✝ S T : HomogeneousSubmonoid 𝒜}
(R' : S.PotionGen R✝)
(T' : S.PotionGen T)
:
S.PotionGen (R✝ * T)
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
HomogeneousSubmonoid.PotionGen.disjUnion_genSubmonoid
{ι : Type u_1}
{R : Type u_2}
{A : Type u_3}
[AddCommGroup ι]
[CommRing R]
[CommRing A]
[Algebra R A]
{𝒜 : ι → Submodule R A}
[DecidableEq ι]
[GradedAlgebra 𝒜]
{R✝ S T : HomogeneousSubmonoid 𝒜}
(R' : S.PotionGen R✝)
(T' : S.PotionGen T)
: